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SUMMARY

This report presents and discusses proton response data taken on
Metal-Oxide-Semiconductor (MOS) electronics operating at room
and cryogenic temperatures. The data were collected by Weapons
Laboratory (WL) personnel while performing radiation tests at
the Los Alamos National Laboratory (LANL) Tandem Van de Graaf!
Accelerator. The objectives of this work were (1) to measure 10
MeV proton responses in MOS electronics operating at cryogenic
temperatures, and (2) determine if these rispansos can be
correlated with cold temperature irradiations from Cobalt-60
(Co60) gamma rays and high energy electrons. The overall
results showed that the primary radiation damage mechanism from
10 MeV protons bombarding cryogenically operated MOS electronics
is similar to that of Co%0 gamma rays and energetic electrons.
That is, at cold temperatures, the radiation-induced "holes"
generated in MOS gate oxides by the 10 MeV protons are "frozen
in place" near the point of creation. The result is a large
hole population that has escaped recombination and is
distributed throughout the oxide (away from the interfaces).

The outcome is that for equal amounts of total ionizirng dose
absorbed, the radiation damage produced in biased MOS structures
at cryogenic temperatures is not equal to that caused by similar
irradiations at room temperatures. Results from this work
showed that all the MOS samples (radiation hardened and
nonhardened), operating under negative gate biases and

irradiated by the protons, suffered greater radiation damage per
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dose at the selected cryogenic temperatures (-170°C to -177°C)
than at room temperatures. The nonradiation hardened MOS
transistors bombarded by the 10 MeV protons, under positive gate
biases, suffered less radiation damage per dose at the cold
temperatures than at the rocm temperatures. Radiation hardened
MOS structures, tolerant to 100 Krad(Si) and irradiated by

protons under positive biases, suffered radiation damages that

were approximately equal at both the cold and room temperatures.
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1.0 INTRODUCTION

Past research (Refs. 1 through 5) has shown that when Metal-
Oxide-Semiconductor (MOS) transistors were irradiated with
Cobalt-60 (Co0%0) gamma rays or energetic electrons, the ionizing
radiation damage produced in the devices was not only influenced
by an applied electrical field across the gate oxide, but also
affected by the operating temperature of the samples. The
investigations showed that when a MOS device was cooled to
temperatuces below 150 K (-123°C) and irradiated with ionizing
radiation, the resulting damage was noticeably different from
the radiation damage at room temperatures (+20°C to +27°C).
Research also showed that if "radiation-hardened" MOS devices
were irradiated at the temperature of liquid nitrogen ( =197°C),
the radiation damage at the cold temperature was significantly

greater than the radiation damage at room temperature.

The model that best explaina this phenomenon is based on the
knowledge that (1) the mobility of "holes" generated in a gate
oxlde layer of a MOS transistor by ionizing radiation is
significantly lower than the mohility of a generated electron,
and (2) the mobilities of both the created holes and electrons

in the oxide decrease as the temperature drops.

For a MOS8 device under room temperature conditions, radiation
induced electron-hole pairs will be generated in the gate oxide

and will separate under the influence of an applied electrical

field. Because of their high mobility, the electrons will be
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rapidly swept out of the oxide. The surviving holes (with low
mobility) will be transported slowly and accumulate near one of
the two oxide interfaces. If a negative electrical field is
applied across the oxide, as it would be for an enhancement mode
P-Channel MOS (PMOS) transistor, the holes will accumulate near
the metal-oxide~interface. If a positive field is applied, as
it would be for an enhancement mode N-Channel MOS8 (NMOS) device,
the holes will collect near the oxide-silicon-interface. The
result (in either case) will be a "flatband" or gate threshold
voltage (Vth) shift that is proportional to the total ionizing
dose received, Because they are closer to the bulk silicon, the
holes collected at the oxide-silicon-interface by the positive
electrical field will have 2 greater adverse effect on the
channel current than the holes accumulated at the metal-oxide-
interface by the negative electrical field. For this reason, an
NMOS transistor should experience a greater radiation damage
than a "complementary® PMOS transistor receiving a similar

radiation dose at room temperature.

When a MOS transistor is operated at cryogenic temperatures with
low electrical fields, the holes generated in the gate oxide by
lonizing radiation are essentially immobile and remain trapped
at the point of creation. 1In contrast, the generated electrons,
which are still mobile in the oxide (even at temperatures as low
as 4 K), are swept out of the gate insulator. The remaining
holes, which are large in number (because of low recombination),

are assumed to be trapped uniformly throughout the oxide. This




large number of "frozen-in" holes often results in radiation
damage to the MOS device that is more severe than the danmage

observed at room-temperatures.

The cold-temperature model was derived from data recorded for
co%0 gamma rays and high energy electrons, Since silicon MOS
electronics are now being considered for cold temperature
applications in outer space, it is important to determine if
this model is valid for other tfpol of radiations occurring in
the natural space environment. One of these ionizing radiations
that has not been thoroughly studied/researched at cryogenic
temperatures is high energy protons. Unlike Co60 and electron-
beam irradiations, which distribute electron=hole pairs in an
isotropic manner throughout the gate oxide, bombarding protons
distribute thelr electron-hole pairs in ionized regions
localized around the tracks of the incident particles. Because
the model is based an the assumption that the frosen«in holes
are trapped uniformly throughout the oxide, the validity of the
model for heavy particles that generate dense ionized tracks

(such as protons) was in question,

To address thias question, the Weapons Laboratory (WL) conducted
an in-house effort to determine {f the ionizing radiation damage
mechanisms in MOS type electronics, being bombarded by protons

at cryogenic tamperatures, can be correlated with Co%0 results.

This report presents the findings of this work.




2.0 EXPERIMENT PROCEDURES

The objective of this investigation was twofold: (1) to measure
the effects of ionizing radiation on MOS type electronics
irradiated by protons at cryogenic temperatures, and (2) to
decide if these cold temperature proton responses correlate with

cold temperature c049 and high energy electron irradiations.

To accomplish this task, four different MOS device types had
their protective covers removed and irradiated at room and at
cold temperatures with 10 MeV protens at 0 deg angles of
incidence. Seconds after exposure to specified levels of
radiation (under variocus bias conditions), the Vth of each MOS
test sample was measured in situ. From these measurements, the
changes in the Vth were plotted as a function of applied gate
field and ionizing dose.

The test structures used in this work included small-scale-
integration (SSI) circuits and discrete PMOS and NMOS devices.
The SSI circuits were RCA-Z-CD4007AD (radiation hardened) and
Fairchild F4007UB (nonradiation hardened) complementary MOS
(PMOS) inverters. Both test structures, which were electrically
identical, were composed of six enhancement-mode, aluminum gate
transistors (three PMOS and three NMOS) on the same test chip.

A primary difference between these two circuits was the
radiation hardness level., The RCA chip was designed to tolerate

100 Krad(Si) of total ionizing radiation dose and remain within




specifications. The Fairchild chip was a "commercial grade"
part with no designed radiation hardness. The discrets,
nonradiation hardened PMOS and NMOS transistors were
enhancement-type, Intersil 3N161 and 3N171 respectively. Each
of these discrete part types was obtained from a single

production run.

The test facility used in these proton irradiations was the Los
Alamos Nationa®l Laboratory’s (LANL) Tandem Van de Graaff
Accelerator. This accelerator :'as chosen because it could
provide the desired energy of mono-energetic protons (10 MeV) at

a continuous and very stable low beam current of 1 to 2 na.

The proton irradiations were performed in a cryogenic evacuatecd
test chamber whicl enclosed a rotating Faraday cup, a beanm
illuminator, two beam collimators, a rotating disk that holds
the irradiated test samples, and a liquid nitrogen reservoir
with 2 cold tranafer finger. The Faraday cup (with a current
integrator) was used to measure the proton beam current. Beam
area and uniformity were definad, and held constant, by the
collimators and the illuminator. These features, along with a
remote-controlled beam-stop, allowed an accurate measurement of
beam current, beam area, and beam exposure time. From these
measurements and with the use of stopping power tables in Ref.
6, the proton flvence and the ionizing total dose for each
irradiation were determined. Once the dose level was defined, a
test sample affixed to the disk was rotated into the beam path
and irradiated.




To irradiate a device at cryogenic temperatures, the cold finger
from the liquid nitrogen reservoir (Fig, 1) was first brought
into contact with the target cold sink on the disk, and the test
sample was cooled to the required temperature. Note that the
device temperature was monitored using a sensor on each of the
test structures., When the proper temperature was reached, the

proton beam was turned on and the desired dose was applied.
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Figure 1. Cryogenic test setup for proton beam irradiations.

It is important when measuring the Vth of the MOS devices at
crycganic temperatures, that the test structures should not

heat up during the measurement. If heating were to occur, rapid




annealing of the radiation damage would take place, and the true
cold temperature damage responses would not be recorded. To
avold this heat-up factor, during a Vth measurement, a procedure
different than that described in MIL-STD.750C (Method 3404) was

used.

In this effort, vth was nmeasured by first applying a specified
drain-to-source voltage (Vds), and then starting with a sero
drain-to-source current (Ids), slowly applying a gate-to-source
voltage (Vgs) until a small specified 1Ids was observed. At this
point in the measurement, the Vgs was recorded and designated as
Vth. The specified Ids for this recorded Vth, and for all of
the test parts in this work was 1.0 mA. This low Ids value was
"chosen because it could be accurately measured with available
test equipment, and it was not large enough to raise the

temperature of the test structures during a Vth measurement.

A more detalled examination of this heat-up phenomena is

presented in Section 4.0.




3.0 TEST RESULTS

Summaries of the test results are presented in rigs. 2 through

11. All of the plots illustrate the ionizing dose radiation

damage from 10 MeV protons bombarding the selected MOS samples

at 0 deg angle of incidence, while the samples were operating

under variocus blases and temperatures. Specifically, in Figs. 2

through 9, the radiation damage is plotted as the change in the

vth (ovth) of the test devices, as a function of ionized dose in

rad(Si). In rigs. 10 and 11, the damage is plotted as AVth ~
versus Vgs for a total applied dose of 50 Krad(Si). In all of

the plots, the radiation sample sizes ranged from 12 to 15 test

transistors for each proton data bar.

Figures 2 and 3 show the radiation damage from 10 MeV protons
bombarding the P-Channel cells on the radiation hardened RCA-Z
CD4007AD test chips. The change in Vth versus ionized dose,
when a vgs of 0.0 V or =5.0 V was applied to the test cells
operating at cold and room temperatures is plotted. Figure 2
presents the data for Vgs =« 0,0 V, and rig. 3 shows the data for
Vgs = =5,0 v, The data in Fig. 2 show that the radiation damage
produced in the PMOS devices was squal at both the cold and room
temperatures. That is, after absorbing equal amounts of total
dose (at the same rate), the changes in the Vth for the PMOS
samples operating with zerc gate biases were approximately

equal. As an example, using QVth = -2.0 V as an arbitrarcy

failure level, both temperature plots show that this occurred
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after the test structures absorbed:¥700‘xrad(81). In PFrig. 3,
the data for the PMOS samples operating under a negative gate
bias show that the permanent shift in the Vth was greater at
cold temperatures than at room temperatures. At the cold
temperature, the negatively biased devices required 90 Krad(si)
veraus the 275 Krad(Si) at room temperatures to produce a AVth

°£ "2-0 V.

The radiation effects from 10 MeV protons striking the N=Channel
cells on the hardened RCA-Z CD4007AD devices are presented in
Figs. 4 and 5. Prigure 4 illustrates the AVth versus dose data
for Vgs = 0 V, and Pig. 5 presents the AVth versus dose data for
Vgs = +5 V., The duta in both figures show that the application
of a cold temperature has little effact on the radiation
hardness of these samples. In fact, the plots showed that the
cold temperature slightly enhanced the hardness level of the
test devices. As an example, in PFig. 8, using AVth = «1.5 V as
an arbitrary failure shift, the data bars showed that this
occurred after absorbing =34 Krad(Si) of irradiation at room
temperatures. At the tested cold temperature, an absorbed dose
of 39 Krad(Si) was required to produced the same threshold
shift, Thias was an increase of 5 Krad(8i) to produce the same

4vth change.

rigqures 6 and 7 present cold and room temperature results from
10 MeV protons irradiating the P-Channel cells on the non-
radiation hardened Pairchild r4007UB c¢ircuits. The AVth versus
ionising dose for Vgs = 0 V is presented in Pig. 6, and the AVth

10
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versus ionizing dose for vgs = -5 V is plotted in Fig. 7. Both
series of plots show that the radiation damage versus dose was
greater at cold temperatures than at room temperatures. Again,
using a avth = =2,0 V as an arbitrary failure shift for the PMOS
cells, Fig. 6 shows that at the cold temperatures, the zero
biased samples needed =180 Xrad(Si) of total dose to produce
this shift, whereas; in the room temperatures tests, =250
Krad(Si) was required to produced the same results. In the
negatively biased plots (Fig. 7), m~d0 Krad(8i) was needed at the
cold temperatures to produce the ~2.0 V shift. Approximately 74

Krad(8i) was required at room temperatures.

The effects on the Fairchild rq007UB N-Channel cells from the
bombarding protons are presented in rigs. 8 and 9. Pigure 8§
shows the cold and room temperature data for Vgs = 0 Vv, and Pig.
9 {llustrates the cold and room temperature plots for Vgs = +$%
V. The data in rig} 8 show that the radiation damage produced
in the zerc biased NMOS cells was unaffected by the change in
the temperature. That is, AVth versus dose was equal at both
test temperatures. However, in rig. 9, the positively biased
devices were affected by temperature change. At the cold
temperatures, the radiation damage was less than the damage
produced at room temperatures. Using a AVth = -2,25 V as the
arbitrary failure criteria, the room temperature test showed
that this vth shift occurred after absorbing =45 Krad(8i). 1In
the cold temperature evaluations, an additional dose of 15
Krad(8i), or a total 60 Krad(Si), was needed to produce the same

Vth change.
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riguze 8. NMOS gate Vth shift versus 10 MeV proton dose for an
applied vgs of 0 V at cold and room temperatures.
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Figure 9. NMOS gate Vth shift versus 10 MeV proton dose for an
applied vgs of +3 V at cold and room temperatures.
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Figure 10 presents the cold and room temperature irradiations on
the discrete, diode protected gate, Intersil 3N161 PMOS silicon
transistors., The AVth ahifts versus Vgs are plotted at two
temperatures for an applied 10 MeV proton dose of 50 Krad(8i).
The plots in this figure show that the radiation damage was
proportional to the applied negative Vgs and inversely
proportional to device’s temperature. That is, as the magnitude
of ~Vgs was increased, the change in Vth was greater at the
cryogenic temperatures than at the room temperatures, As an
example, with a Vgs = -10 V, the AVth at room temperature was
m=-4.8 V. ror the same Vgs at the tested cold temperatures, the
Avth was -5.6 V. This was an increase/change of -0.8 V,

The radiation effects from 10 MeV protons bombarding the
discrete (nondiode protected) Intersil NMOS silicon transistors
are presented in PFlg. 11, The 4aVth versus Vgs for an applied
proton dose of S50 Krad(Si) is shown at cold and room
temperatures. Note that since there is no gate protection on
this device type, tests were performed both with a positive and
a negative voltage across the gate-to-source terminals. Results
from these tests showed that the radiation damage was greater at
room temperatures than at cryogenic temperatures for a
positively blased Vgs. However, operating under a negatively
biased Vgs, the results were reversed. The damage was greater

at the cold temperatures than at the room temperatures.
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Figure 10. PMOS gate Vth shift versus Vgs for a 10 MeV proton
dose of 50 Krad (8i) at cold and room temperatures.
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4.0 DISCUSSION

The results presented in this report show the radiation damage
mechanism for high energy 10 MeV protons striking cryogenically
operated MOS type electronics are similar (in certain aspects),
to that observed in Co%0 and energetic electrons irradiations.
That is, at the cold temperatures tested, some of the test
samples (the PMOS transistors or the test devices irradiated
under a negative Vgs), suffered greater radiation damage per
dose than for similar irradiations at room temperatures (PFigs.
3, 6§, 7, 10 and 11), These results support the cold-temperature

model presented in Section 1.0,

In contrast, the results firom the NMOS test samples (the test
devices lrradiated under a positive Vgs) did not expliecitly
support this cryogenic medel. The reason was the NMOS devices
irradiated at cold temperatures under a positive vgs, suffered
less (or equivalent) damage per dose than similar irradiations
at room temperatures (Figs. 5, 9 and 11). To fully satisfy the
model, the radiation damage in the biased NMOS devices should
have been greater at the cold temperatures than at the room
temperatures. This should have besn especially true for the RCA
radiation-hardened MOS structures. There are several
possibilities for this disparity. A few are: variations in the
test samples used in this work versus the test devices used in
other efforts, Jifferences in the cryogenic test temperatures,
and dissimilarities in the damage mechanisms between the protons

and the Coé0 gamma rays (or high energy electrons).
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The most plausible explanation for the disparities is the
differences in the selected test samples. Most of the devices
used in this work were commercial grade chips, with no radiation
hardness. The only chip type that was built with a "firm"
tolerance to radiation was the RCA-Z CD4007AD, and the hardness
level of this chip was only designed for 100 Krad(8i). However,
test samples used in the other efforts (Refs., 2 through 5) were
speciaily built and had greater tolerance to ionising radiation.
Many of the special devices, at room temperatures, had a
hardness level beyond 1.0 Mrad(Si). These high levels of
radlation hardness translated into small Vth changes in room
temperature irradiations and larger Vth changes (because of
lazge numbers of holes frozen in the gate oxides) in cold
temperature irradiations. It is highly probable that if the
hardness level of the RCA chip was increased to 1.0 Mrad(S8i),
the positive gate-biased NMOS cells would suffer & greater
damage from ionized radiation at cold temperatures than at

room temperatures. '

Another parameter that may have been a factor in these results
was temperature. In this effort (because of limitations in the
test fixtures) the coldest temperature used was between -170°C
and -177°C. In the work performed for the references, the test
temperatures were close to that of liquid nitrogen ( -197°).
This translates into a temperature differential of -20°¢ to
-27°C between the reference data and the work performed in this

effort. 8ince the cold temperature model was mainly proposed
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for temperatures at (or very near) -197°C, the NMOS devices
irradiated in this work may not have generated as large a
frozen-in hole population within the oxides as samples bombarded
at -197°C. This could add to the explanation of why the
radiation damage in the positively biased NMOS devices evaluated
in this work was less than the damage produced at room

temperatures,

A third factor that could explain the unexpected NMOS results
was a possible difference in the damage mechanism between the 10
MaV protons and the co 0 gamma rays (or high energy electrons).
In high energy proton irradiations, the generation of electron-
hole pairs in the gate oxides of the test samples are localized
around the tracks of the incident protons. For Co%0 and high
snergy electron exposures, the ionization regions are generated
in an isotropic manner throughout the oxides. This difference
in the way the created electrons and holes are dispersed may
alter the distribution of the frozen-in holes within the oxides.
In the proposed cryogenic model, it was assumed that the
immobile holes produced a uniform positive charge density
throughout the gate oxides, If the dense ionization tracks
produced by the protons resulted in a different charge
distribution, then the mndel may not always apply to protons.
Countering this hypothesis were the results from the biased PMOS
irradiations, which showed that the proton damage did correlate
with the model predictions. To get a better answer on this
possible factor, cold-temperature Co%0 irradiations would have

to be performed on the same test sample types that were
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evaluated in the 10 MeV protons., From such Eolts, true
comparisons between the protons and Co®0 gammas can be made, and
the differences in the damage mechanisms (if any) can better be
éotu:mined. Such correlation tests are planned in the near

future.

Finally, as noted in Section 2.0, if the test devices (operating
at cryogenic temperatures) were allowed to increase
significantly in temperature during a Vth measurement, the
corract cold temperature responses would not be recorded. This
would be true in this work, i{f the procedures outlined in
MIL-8TD-750 (Method 3404) were used for measuring vth, The MIL-
8TD=750 calls for measuring the gate Vth of a MOS transistor by
a procedure called the Saturated Threshold Voltage Method. This
method measures the gate Vth while the MOS8 device is operating
in the Saturation Region (the region of operation between the
Linear and the Breakdown modes) of the device. 1In practice,

the Saturation Region represents the normal operating region of

a MOS transistor.

Figure 12 illustrates thiz MIL-STD procedure £or'mullur1ng the

vth of a PMOS device. The Vgs versus the square-root of the
drain current minus the drain leakage current is presented, The
vth is cbtained by first measuring the drain-source current at
saveral values of vgs for a fixed vds (-10 V)., Then on a linear
scale, the sgquare root of the difference of the drain current
and the leakage current is plotted as a function of Vvgs. This

measurement is repeated until Vgs = Vds, or the maximum drain




current is reached. Next, the maximum tangent to the resulting
curve is extrapolated downward to the Vgs axis. The resulting
intersection of this line with the Vgs axis is the measured Vth,
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Figure 12. Gate to source voltage versus the sguars-root
drain current minus leakage current for a

P-Channel enhancement mode MOSFET using the
Saturated Threshold Voltage Method.

This procedure has one major drawback: it heats the test device
during the measurement. In early tests in this effort, Vth
neasurements were made with the aid of a computer using this

technique. A sample of the results is presented in Fig. 13,

The Vth shift versus 10 MeV protons for Vgs = 45 V recorded at
cold and room temperatures is plotted in Fig. 13. The devices

were N~Channel cells on the RCA-Z CD4007AD test chips, picked
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from the same lot that was evaluated in Fig. 5 using the low Ids
method. The results in Fig. 13 show abrupt recoveries in the
avth for the samples irradiated at the cold temperatures. This
sudden annealing in the AVth during the cold temperature

irradiations was observed in all of the test devices measured by
the MIL-STD-750 method.
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Figure 13. NMOS gate Vth shift versus 10 MeV proton dose for

an applied Vg¢ of +5 V at cold and room temperatures
neasured by the MIL-STD-750 metheod.

The cause of these sudden recoveries in the Vth was attributed
to the MIL-STD procedure heating the test devices during the
measurements. This Vth measuring technique causes high currents
to be generated in the drain-source channels, especially when
the Vgs is allowed to increase in value and approach the value
of the Vds. It was concluded that these high drain-source

currents were the cause of this heat-up factor. Tests waere
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performed, and it was discovered that the MIL-STD-750C method
was raising the temperature of the tast structures (for a few
seconds) from a~-170°C to & -104°C. It was also determined that
this short heat-up period was enough to cause the mobility of
the frozen~in holes (within the gate oxides) to suddenly
increase and to cause them to recombine with electrons injected
from the conducting drain-source channels. Note that these high
channel currents increased the probability of thermal breakdowns
in the barriers between the gate-oxides and the silicon

channels, thereby increasing the chances of injection currents.

To counter this heat-up factor a Vth measurement procedure which
ensured that the test structures would not change temperature
during the cryogenic measurements had to be employed. 8ince, at
the time of this work, there was no known standard available for
measuring Vvth at cold temperatures, a method was devised (with
the agreement of all the partiess involved). The chosen method
was to measure a Vth that would generate a small, specified (but
measurable) Ids. The important parameter that had to be
determined was AVth versus dose. It was felt that as long as
the Vth was measured with consistency (using the same low Ids
for each measursment), the AVth versus dose would be a true
measurement of the proton damage. This low Ids method is
outlined in Section 2.0.
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§.0 CONCLUSION :

The primary ioniszing radiation damage mechanism from 10 MeV
protons bombarding cryogenically operated biased MOS type
electronics is like that of Co®® gamma rays and high energy
electrons. That is, at cold temperatures (close to that of
liquid nitrogen), large numbers of radiation induced holes
generated in a biased gate oxide of a MOS device become immobile
and are trapped in the oxide, somevhere between the gate and
channel interfaces. This phenomenon results in a large hole
population, that has escapad recombination and is distributed
throughout the oxide. The result is that for equal amounts of
total lonizing dose absorbed, the radiation damage produced in
biased MOS structures at cold temperatures is not equivalent to

similar irradiations at room temperatures.

Specifically, for MOS devices (F-Channel or N=Channel) bombarded
by 10 MeV protons, under applied negative gate biases, the
radiation damage per dose absorbed would be greater at cold
temperatures than at room temperatures. This would be true for
both radiation hardened and nonradlation hardened MOS
structures. This will not be true for MOS devices operating
under positive gate biases. Nonradiation hardened MOS
transistors, bombarded by 10 MeV protons, operating under
positive gate bias conditions, will suffer less radiation damage

per dose at cold temperatures than at room temperatures.

Depending upon the hardness level, positively biased MOS8 devices

that are classified as radiation hardened, may or may not suffer

24




greater proton damage per dose at cold temperatures than at room
temperatures. The harder the device is to ionizing radiation at
room temperatures, the higher the probability the structure will

suffer greater radiation damage at cold temperatures.

Finally, i{f the irradiated cold temperature MOS devices were
allowad to heat to = -123°C or warmer, the preton induced
trapped holes would suddenly beccme mobile, and the radiation
damage within the oxides would anneal rapidly.
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